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A B S T R A C T

Is confidence in perceptual decisions generated by the same brain processes as decision itself, or does confidence
require metacognitive processes following up on the decision? In a masked orientation task with varying stimulus-
onset-asynchrony, we used EEG and cognitive modelling to trace the timing of the neural correlates of confidence.
Confidence reported by human observers increased with stimulus-onset-asynchrony in correct and to a lesser
degree in incorrect trials, a pattern incompatible with established models of confidence. Electrophysiological
activity was associated with confidence in two different time periods, namely 350–500 ms after stimulus onset
and 250–350 ms after the response. Cognitive modelling revealed that only the activity following on the stimulus
exhibited the same statistical regularities as confidence, while the statistical pattern of the activity following the
response was incompatible with confidence. It is argued that electrophysiological markers of confidence and error
awareness are at least in parts distinct.
1. Introduction

Decision confidence is a ubiquitous feature of human decision mak-
ing: Whenever we make a choice, the decision is accompanied by a
greater or smaller degree of confidence that the choice is correct. Con-
fidence can be defined as an evaluation of one’s decision making,
resulting in a degree of certainty that the decision is correct (Pouget et al.,
2016). How does the brain give rise to confidence? Two conflicting views
have been proposed: According to one view, confidence may be gener-
ated directly by the very same brain processes that are involved in de-
cision formation (Kepecs et al., 2008; Kiani and Shadlen, 2009; Rolls
et al., 2010; Vickers, 1970). According to the second view, confidence is
generated by a separate, metacognitive process that gives rise to both
confidence and error awareness (Boldt and Yeung, 2015; Charles and
Yeung, 2018). A common mechanism underlying error monitoring and
decision confidence may be on-going accumulation of sensory evidence
after the decision, allowing observers to reverse their belief about the
stimulus (Pleskac and Busemeyer, 2010; Resulaj et al., 2009; Steinhauser
et al., 2008; van den Berg et al., 2016).

The aim of the present study was to test if there are neural correlates
of confidence in a perceptual decision already before the time of the
behavioural response consistent with a common origin of confidence and
Eichst€att-Ingolstadt. Psychologie
h).

3
m 5 May 2020; Accepted 14 May

vier Inc. This is an open access a
choice formation, or if these correlates do not emerge until the time of
neural markers of error awareness following the response. For this pur-
pose, the present study used cognitive modelling and electroencepha-
lography to trace the timing of the neural correlates of confidence in
perceptual decisions.
1.1. Event-related potential correlates of confidence

The present study examines three event-related potential (ERP)
components that were previously proposed as correlates of confidence:
the P3 (Hillyard et al., 1971), the error-related negativity ERN (Scheffers
and Coles, 2000), and the error-related positivity Pe (Boldt and Yeung,
2015). The P3 is an ERP component recorded over central and parietal
electrodes peaking 300–500 ms after the presentation of a task-relevant
stimulus. It is a natural candidate for a shared electrophysiological
correlate of confidence and the decision because the parietal P3 was
suggested as a marker of accumulated evidence in perceptual decision
making tasks (O’Connell et al., 2012; Philiastides et al., 2014; Twomey
et al., 2015). Previous studies showed that P3 amplitudes are correlated
with confidence judgments (Eimer and Mazza, 2005; Hillyard et al.,
1971). In addition, the P3 showed statistical properties expected from a
Bayesian model of decision confidence in a vibrotactile forced-choice
II, Ostenstraße 25, 85072, Eichst€att, Germany.
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task (Herding et al., 2019). However, a marker of accumulated evidence
is by far not the only interpretation of the P3: According to a classical
theory, the P3 reflects updating of working memory in response to
task-relevant events (Donchin and Coles, 1988). Other theories include
the global broadcast of visual contents within a neural global workspace
(Sergent et al., 2005), the mobilization for action following motivation-
ally significant stimuli (Nieuwenhuis et al., 2011), or a monitoring pro-
cess if the decision is correctly transformed into an action (Verleger et al.,
2005).

ERN and Pe are established makers of error processing: If one shared
neurocognitive mechanism gives rise to both confidence and error
monitoring, confidence should be associated with ERN and Pe. The ERN
is an ERP component with frontocentral topography at the same time of
shortly after incorrect responses (Falkenstein et al., 1991; Gehring et al.,
1993). An equivalent yet smaller negativity referred to as CRN was
observed after correct responses (Vidal et al., 2003). Previous studies
suggested that the ERN was associated with participants’ confidence
judgments in a flanker task (Scheffers and Coles, 2000). However, the
ERN failed to predict graded confidence judgments on a trial-to-trial basis
in a visual discrimination task with briefly flashed stimuli (Boldt and
Yeung, 2015). Finally, the ERN can be dissociated from decision confi-
dence by the relation with subjective visibility: In a masked number
discrimination task, the ERN varied in an all-or-nothing way and was
only present if there was a conscious percept of the stimulus, while
confidence varied continuously and did not depend on a conscious
percept of the stimulus (Charles et al., 2014, 2013).

The Pe is a parietally focused positive deflection 200–500 ms after
incorrect responses. The Pe is similar to the parietal P3 in terms of
topography and latency although the Pe is locked to the response, and P3
to the stimulus (Overbeek et al., 2005). The Pe is a marker of conscious
awareness of having committed an error (Nieuwenhuis et al., 2001) and
can be dissociated from the ERN: In a study where participants responded
to a masked target stimulus surrounded by visible flanker stimuli, erro-
neous responding to the flanker elicited only a Pe, but not an ERN (Di
Gregorio et al., 2018). The Pe can be explained by the strength of accu-
mulated evidence of having made an error (Steinhauser and Yeung,
2012, 2010; Ullsperger et al., 2010; Wessel et al., 2011). Moreover, in a
visual discrimination task, the Pe was associated with both confidence in
correct responses as well as the subjective belief of having made an error
in a gradual way (Boldt and Yeung, 2015). However, the timings of ERN
and Pe are not immediately plausible for correlates of decision confi-
dence. As it seems that confidence is experienced already at a point in
time when no response has yet been made, correlates of confidence may
naïvely be expected before the response, at the same time as the decision
or shortly afterwards. And yet, ERN and Pe do not occur until after the
response.

1.2. Statistical properties of decision confidence

How can hypothesized neural correlates of confidence be tested? If
specific neural activity is a correlate of confidence, it must be associated
with the same statistical regularities as confidence judgments (Kepecs
et al., 2008; Sanders et al., 2016): By implication, if the statistical regu-
larities of a specific ERP component are incompatible with those of
confidence, that component is not a correlate of confidence. In the pre-
sent study, we tracked the statistical regularities of confidence by fitting a
series of cognitive models to the behavioural data. The model that fitted
the behaviour best was used to predict the neuronal data. Previous
studies used the so-called folded X-pattern as a statistical marker of
confidence (Braun et al., 2018; Fetsch et al., 2014; Herding et al., 2019;
Lak et al., 2017; Urai et al., 2017). The folded X-pattern is characterised
by an increase of confidence with stimulus strength in correct trials and a
decrease of confidence with stimulus strength in incorrect trials and was
derived from Bayesian decision theory (Hangya et al., 2016; Sanders
et al., 2016), but also follows from signal detection theory (Kepecs et al.,
2008) or postdecisional accumulation models (Moran et al., 2015).
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However, the folded X-pattern can be misleading about confidence
because Bayesian decision theory is compatible with other statistical
patterns, too (Adler and Ma, 2018; Rausch and Zehetleitner, 2019a). In
addition, in some tasks, confidence empirically increased with stimulus
strength in correct trials and to a lesser degree in incorrect trials (Kiani
et al., 2014; Rausch et al., 2018; Stolyarova et al., 2019; van den Berg
et al., 2016), a pattern we refer to as double increase pattern. The double
increase pattern can be reproduced by a smaller number of mathematical
models, including the weighted evidence and visibility (WEV) model
(Rausch et al., 2018), the heuristic detection model (Maniscalco et al.,
2016; Peters et al., 2017), and some Bayesian models (Adler and Ma,
2018; Rausch and Zehetleitner, 2019a). For these reasons, it is not
legitimate to assume a specific statistical pattern a priori. However,
irrespective of whether confidence follows the folded-X or double in-
crease pattern in a specific task, a neural correlate of confidence should
always show the same pattern as the one observed with confidence
judgments. In addition, a cognitive model fitted to confidence judgments
should also be able to accurately predict the neural correlate of
confidence.

1.3. Rationale of the present study

To assess the timing of the neural correlates of confidence in
perceptual decisions, human observers performed a masked orientation
discrimination task (see Fig. 1) while EEGwas recorded. After each single
response, observers reported their confidence on a scale with the cate-
gories, “not at all”, “a little”, “nearly sure”, and “completely sure”. In case
observers were aware of an incorrect response, observers were instructed
to respond, “not at all”. We used a task where confidence followed the
double increase pattern in previous studies (Rausch et al., 2018), because
the double increase pattern can be explained by a smaller number of
cognitive models. The strength of stimulation was manipulated by
varying the stimulus-onset-asynchrony (SOA), i.e. the time between
onset of the stimulus and the mask. Bayes factors were used for statistical
inference, allowing us to quantify both the evidence for an effect as well
as evidence against an effect (Rouder et al., 2009).

To trace the statistical regularities underlying confidence, we fitted
nine previously proposed models of decision confidence to confidence
judgements, including.

- SDT (Green and Swets, 1966; Macmillan and Creelman, 2005;
Wickens, 2002)

- SDT with noise superimposed on ratings (Maniscalco and Lau, 2016)
- SDT model with postdecisional accumulation (Barrett et al., 2013)
- the two-dimensional Bayesian model (Aitchison et al., 2015)
- the noisy decay model (Maniscalco and Lau, 2016)
- the detection heuristic model (Peters et al., 2017)
- the two high-threshold model (Kellen and Klauer, 2015)
- the two channel model (Rausch and Zehetleitner, 2017)
- the WEV-model (Rausch et al., 2018).

Because the objective of the present study was specifically confi-
dence, we selected models from the literature that are fitted directly to
confidence judgments, and not to reaction times. From the model pa-
rameters that fitted the behavioural data best, we generated a prediction
about the ERP amplitudes.

The present study was designed to test the following predictions:With
respect to confidence judgments, we expected that confidence increases
as a function of the SOA both in correct as well as in incorrect trials, i.e.
confidence is characterised by the double increase pattern. Regarding
proposed ERP correlates of confidence, as correct responses are
commonly associated with more positive activity at the time of the P3
(Koivisto and Revonsuo, 2010), we hypothesized that confidence is
positively associated with EEG activity at the time of the P3. As errors are
known to cause negative shifts at the time of the ERN, again a positive
association was expected between confidence and activity at the time of



Fig. 1. Sequence of events during the Experiment. The target stimulus was a sinusoidal grating, oriented horizontally or vertically. After 16.7, 33.3, 66.7, 133.3 ms,
the target was replaced by a chequered mask presented for 500 ms. Afterwards, observers reported first the orientation of the target and then their degree of con-
fidence in having made the correct orientation response. Observers were instructed that accuracy but not speed was critical for both responses.

M. Rausch et al. NeuroImage 218 (2020) 116963
the ERN (Scheffers and Coles, 2000). In contrast, as errors are known to
cause positive shifts at the time of the Pe, we predicted a negative as-
sociation between confidence and activity at the time of the Pe in line
with previous research (Boldt and Yeung, 2015). Moreover, if P3, ERN,
and Pe were indeed correlates of confidence, the statistical pattern as a
function of SOA and choice accuracy should correspond to the statistical
pattern observed in confidence judgments: This means that P3, ERN, and
Pe should be characterised by the double increase pattern as well.
Regarding cognitive models, we expected that the best fit to the behav-
ioural data should be achieved by one of the models that is in principle
able to accommodate the double increase pattern, i.e. the WEV-model,
the heuristic detection model, or the noisy decay model. Finally, the
models that provide an adequate fit to the behavioural data should also
accurately predict the ERP correlates of confidence.

2. Material and methods

2.1. Participants

25 human participants (21 female, 4 male) took part in the experi-
ment. The age of the participants ranged between 18 and 36 years (Md ¼
22). All participants reported normal or corrected-to-normal vision, no
history of neuropsychological or psychiatric disorders and not to be on
psycho-active medication. All participants gave written informed consent
and received either course credits or €8 per hour for participation. The
experimental protocol was approved by the ethics committee of the
Catholic University of Eichst€att-Ingolstadt.

2.2. Apparatus and stimuli

The experiment was performed a sound-attenuated and electrically
shielded cabin. The stimuli were presented on an Iiyama MS103DT
monitor with screen diagonal of 51 cm, set at a resolution of 1280� 1024
px and refresh rate of 60 Hz. The viewing distance, not enforced by
constraints, was approximately 60 cm. The experiment was conducted
using PsychoPy v. 1.83.04 (Peirce, 2009, 2007) on a Fujitsu Celsius
W530 desktop computer with Windows 8.1. The target stimulus was a
square (size 3� � 3�), textured with a sinusoidal grating with one cycle
per degree of visual angle (maximal luminance: 44 cd/m2; minimal
luminance: 14 cd/m2). The mask consisted of a square (4� � 4�) with
a black (0 cd/m2) and white (60 cd/m2) chequered pattern consisting of
5 columns and rows. All stimuli were presented at fixation in front of a
grey (29 cd/m2) background. The orientation of the grating varied
randomly between horizontal or vertical. Participants reported the
3

orientation of the grating with their right hands by pressing the down key
when the grating was vertical and the right key when the grating was
horizontal. Likewise, participants reported their confidence in being
correct with their left hands by pressing one, two, three, or four on the
number keys in top row of the keyboard.
2.3. Experimental trial

Each trial began with the presentation of a fixation cross for a dura-
tion randomly chosen between 950, 1000, and 1050 ms, after which the
target stimulus appeared. The duration of the fixation cross and thus the
onset of the target stimulus was varied to minimize preparatory EEG
activity before the onset of the target. Then the target stimulus was
shown for a short period of time until it was replaced by the masking
stimulus. There were four different possible SOAs, i.e. time periods be-
tween target onset and mask onset: 16.7, 33.3, 66.7 and 133.3 ms. The
mask was presented for 500 ms. When the mask had disappeared, an
empty screen was shown. Participants then indicated whether the target
had been horizontal or vertical. The question “How confident are you
about your response?” with the four response options “not at all”, “a
little”, “nearly sure”, and “completely sure” was displayed 500 ms after
the response to ensure that the confidence scale did not interfere with
ERN and Pe. Participants then pressed a key to indicate their degree of
confidence that their orientation response was correct. If participants had
indicated the incorrect orientation of the target, the word error was dis-
played for 1000 ms before the trial ended.
2.4. Design and procedure

Participants were instructed to report the orientation of the grating as
accurately as possible without time pressure and to guess the orientation
of the target if they had no idea about the orientation at all. In addition,
they were instructed that they should report their degree of confidence
that their orientation response had been correct, they should report their
confidence as accurately as possible and that if they were aware that they
had made an error, they should rate their degree of confidence as “not at
all”.

The experiment consisted of one training block and 24 experimental
blocks of 40 trials each. Each SOA featured 10 times in each block in
random order. The orientation of the target stimulus varied randomly
across trials. After each block, the percentage of errors was displayed to
provide participants with feedback about their accuracy. The whole
experimental session took approximately 1.5 h.
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2.5. EEG acquisition

The electroencephalogram (EEG) was recorded from 64 electrodes
using a BIOSEMI Active-Two system (BioSemi, Amsterdam, Netherlands;
Ag/AgCl electrodes, channels Fp1, AF7, AF3, F1, F3, F5, F7, FT7, FC5,
FC3, FC1, C1, C3, C5, T7, TP7, CP5, CP3, CP1, P1, P3, P5, P7, P9, PO7,
PO3, O1, Iz, Oz, POz, Pz, CPz, Fpz, Fp2, AF8, AF4, AFz, Fz, F2, F4, F6, F8,
FT8, FC6, FC4, FC2, FCz, Cz, C2, C4, C6, T8, TP8, CP6, CP4, CP2, P2, P4,
P6, P8, P10, PO8, PO4, O2 as well as the left and right mastoid, relative to
common mode sense CMS active electrode and driven right leg DR pas-
sive electrode). Vertical and horizontal electrooculogram (EOG) was
recorded from electrodes above and below the right eye and on the outer
canthi of both eyes. All electrodes were off-line re-referenced to linked
mastoids. EEG and EOG data were continuously recorded at a sampling
rate of 512 Hz.
2.6. EEG analysis

The analysis of the EEG data was performed using MNE-Python v.
0.16.1 (Gramfort et al., 2014, 2013). First, the data was re-referenced to
the linked mastoids. Next, the signal was band-pass filtered between 0.5
and 40 Hz by windowed finite impulse response filtering. The raw data
was inspected visually to remove extreme noise events and
artefact-contaminated electrodes. Then, we conducted an independent
component analysis based on the fastica algorithm (Hyv€arinen, 1999),
identifying components representing blinks and/or horizontal eye
movements and removing these artefacts before back-projection of the
residual components.

The continuous EEG was segmented into two different kinds of
epochs, one of which locked to the onset of the target stimulus, and one
locked to the orientation response. Stimulus-locked epochs started 200
ms before stimulus onset, ended 600 ms after stimulus onset and were
baseline-corrected to the 200 ms pre-stimulus interval. Response-locked
epochs started 200 ms before the orientation response, ended 600 ms
after the response, and were baseline-corrected to the time range be-
tween 150 and 50 ms before the response. The baseline for the response-
locked time windows was chosen to avoid an overlap between baseline
and ERN because sometimes ERN activity starts slightly prior to the
completion of the motor response (Riesel et al., 2013). Epochs with
amplitude changes greater than 100 μV were excluded from analysis, the
same exclusion criterion as in a previous study of EEG correlates of
confidence (Boldt and Yeung, 2015). Finally, ERP waveforms were ob-
tained by averaging across epochs (but not for the validation of the
prediction by the cognitive models, see below). EEG activity in specific
time windows was quantified by calculating mean amplitudes because
mean amplitudes are robust to different numbers of trials across condi-
tions (Luck, 2014). The time windows were 350–500 ms poststimulus at
electrode Pz for the P3, -40 – 60 ms after the orientation discrimination
response at electrode FCz for the ERN, and 250–350 ms after the orien-
tation discrimination response at electrode Pz for the Pe, the same time
windows as in a previous study of EEG correlates of confidence (Boldt
and Yeung, 2015). The time window of 350–500 after stimulus onset
excluded the point in time when participants responded to the orienta-
tion of the stimulus (reaction time at the SOA of 133.3 ms:M¼ 624.6 ms,
at the SOA of 16.7 ms:M¼ 1001.0ms). As can be seen from Fig 5L, the Pe
in the present study seemed to stretch over a more prolonged time
window than 250–350 ms postresponse. For this reason, we repeated all
analyses using a time window of 200–500 ms postresponse, which came
to the same interpretation of the data. After artefact rejection, there were
on average M ¼ 816.3 stimulus-locked epochs and M ¼ 800.0
response-locked epochs per participant. In the condition with the
smallest number of trials (incorrect trials at the SOA of 133.3 ms), there
were on average 10.1 trials. To create topographical maps,
artefact-contaminated electrodes that were excluded in the beginning
were interpolated using spherical splines (Perrin et al., 1989).
4

2.7. Model specification

Nine models were fitted to the combined distributions of orientation
discrimination and confidence judgments, separately for each single
participant.

i. SDT
ii. SDT with noise superimposed on ratings
iii. Noisy decay model
iv. WEV-model
v. Two channel model
vi. SDT model with postdecisional accumulation
vii. Detection heuristic model
viii. Two-dimensional Bayesian model
ix. Two high-threshold model

For all nine models, we assumed that the stimulation is comprised out
of two experimental variables, the identity of the stimulus Sid and the
strength of the stimulus Ss. Participants select a discrimination response
Rid 2 f0;1g about the identity of the stimulus Sid 2 f0;1g and confidence
judgment out of an ordered set of confidence categories C 2 f1;2;3; 4g.
Models (i)-(vi) were derived from SDT and assumed the same architec-
ture for the choice about the identity of the stimulus. In contrast, models
(vii)-(ix) were based on different decision architectures.

2.7.1. SDT derived models
Models (i) -(vi) assumed that a decision about the identity of the

stimulus is made based on a comparison between a continuous decision
variable for the discrimination judgment δid with the free criterion
parameter θid. Participants responded R ¼ 0, when δid < θid, and R ¼ 1 if
δid > θid.The decision variable for the discrimination judgment δid was
modelled as a random sample from a Gaussian distribution N :

δideN ðμ¼ðSid � 1 = 2Þ� Ss; σ¼ σidÞ (1)

The stimulus strength Ss was a free parameter specific to each SOA.
When Sid ¼ 0, the distribution of δidwas shifted to the left by the distance
of Ss=2. When Sid ¼ 1, the distribution is shifted by the same distance to
the right. Thus, Ss denotes the distance of the distributions generated by
the two possible identities of the stimulus and is in this respect equivalent
to the sensitivity parameter d’ in standard SDT. Concerning the standard
deviation σid, model fitting was repeated using two different assumptions
about σid to ensure that the results were robust. For the first set of ana-
lyses, σidwas fixed at 1 for both identities of the stimulus, thus the free
parameter Ss fully accounted for each participant’s d’ at each SOA. For
the second set of analyses, σid could vary depending on Sid : An additional
free parameter λ characterised the relationship between the variability of
δid associated the two possible identities of the stimulus.

σid0 ¼ λ
σid1 ¼ 1=λ

(2)

A specific degree of confidence was determined by comparing the
decision variable for confidence δc against a set of three criteria θc. Each
criterion delineated between two adjacent categories of confidence, e.g.
participants selected the category 2 if δc fell between θc1 (which sepa-
rated category 1 and 2) and θc2 (which separated category 2 and 3). To be
consistent with standard SDT, we fitted three different criteria for each of
the two response options. The different models were characterised by
different ways how δc was determined.

2.7.1.1. SDT rating model. According to model (i), the decision variables
for identification and confidence were identical:

δc ¼ δid (3)

2.7.1.2. Noisy SDT model. According to model (ii), δc was sampled from
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a Gaussian distribution, with a mean equal to the decision variable δid
and the standard deviation σc, which was an additional free parameter:

δceN ðμ¼ δid ; σ¼ σcÞ (4)

2.7.1.3. Noisy decay model. According to model (iii), δc was also
sampled from a Gaussian distribution with the standard deviation σc. Just
as in the noisy SDT model, the mean of δc depended on δid. However, in
contrast to the noisy SDT model, according to the noisy decay model,
δidwas reduced by multiplication with a signal reduction parameter ρS.
The signal reduction parameter ρS was a separate free parameter for each
SOA and was bounded between 0 and 1.

δceN ðμ¼ δid � ρs; σ¼ σcÞ (5)

2.7.1.4. WEV model. The conceptual idea underlying the WEV-model is
that the observer combine evidence about the choice-relevant feature of
the stimulus with strength of evidence about choice-irrelevant features to
select one out of several confidence categories (Rausch et al., 2018;
Rausch and Zehetleitner, 2019b). Evidence about choice-irrelevant fea-
tures of the stimulus can improve confidence judgment because they
allow the observer to estimate the reliability of the percept more pre-
cisely. A possible neural mechanismmay involve posterior parietal cortex
and ventral striatum, which were found to track sensory reliability
independently of the choice (Bang and Fleming, 2018).

The express this idea in formal terms, the WEVmodel assumed that δc
was again sampled from a Gaussian distribution with the standard de-
viation σc :

δceN ðμ¼ð1�wÞ� δid þw�ð2Rid � 1Þ� ðSs � SsÞ; σ¼ σcÞ (6)

Formula (6) ensured that the centre of the distribution was shifted
towards 0 when the strength of stimulation Ss was low and away from
0 when Ss was high. The parameter w captured the degree to which
participants relied on sensory evidence about the identity or on identity-
irrelevant evidence when they determined their degree of confidence.
When w ¼ 0, the model was identical to the noisy SDT model; when w ¼
1, δc only depended on the strength of stimulation Ss, but not on the
decision variable for the identification judgment δid. The term 2Rid� 1
ensured that strong stimuli tended to shift the location of the distribution
in a way that high confidence was more likely, and likewise, weak stimuli
tended to shift the location of the distribution in a way that the proba-
bility of low confidence increased. Ss denotes the mean of Ss across the
five SOAs and was added to the formulae to increase stability during
parameter fitting. The standard deviation σc quantifies the amount of
unsystematic variability contributing to confidence judgments but not to
identification judgments. The unsystematic variability may stem from
different sources, including the uncertainty in the estimate of stimulus
strength or the noise inherent to metacognitive processes.

2.7.1.5. Two-channel model. The two-channel represents the idea that
confidence is based on sensory evidence independent from the sensory
evidence used for the decision. Thus, for the two-channel model, δc was
again sampled from a Gaussian distribution, but now δc was sampled
independently from δid:

δceN ðμ¼ðSid � 1 = 2Þ� Ss � a; σ¼ 1Þ (7)

The free parameter a expressed the fraction of signal available to the
second channel relative to the signal available to the first channel.

2.7.1.6. SDT model with postdecisional evidence. According to model (vi),
the,δc was again sampled from a Gaussian distribution:

δce N
�
μ¼ δid þð2Sid � 1Þ� Ss � b; σ¼

ffiffiffi
b

p �
(8)

The free parameter b indicated the amount of postdecisional
5

accumulation, and the term 2Sid � 1 ensured that postdecisional accu-
mulation tended to decrease δc when Sid ¼ 0, and to increase δc when
Sid ¼ 1.

2.7.2. Non-SDT models
Model (vii)-(ix) assumed a different decision architecture for the

identification judgment than models (i)-(vi).

2.7.2.1. Detection heuristic model. According to model (vii), there were
two separate decision variables for the identification judgment, each
belonging to one possible identity of the stimulus:

δid0eN ðμ ¼ ð1� SidÞ � Ss � b; σ ¼ σidÞ
δid1eN ðμ ¼ Sid � Ss þ b; σ ¼ σidÞ (9)

The parameter b reflected the a priori bias in favour of Rid ¼ 1. Par-
ticipants were assumed to respond Rid ¼ 0, when δid0 > δid1, and Rid ¼ 1
if δid0 < δid1. Confidence judgments were only based on the decision
variable pertaining to the selected response: When Rid ¼ 0, δid0 was
compared against a series of confidence criteria θc0to select a specific
degree of confidence; and when Rid ¼ 1, the comparison was based on
δid1 as well as a second set of criteria θc1: The bias parameter b was not
included in the original version of the model (Peters et al., 2017), but we
included it here because there was strong evidence that the free bias
parameter improved model fit of the detection heuristic model.

2.7.2.2. 2-D Bayesian model. According to model (viii), there were again
two separate decision variables, δid0 and δid1; referred to as ‘sensory
signals’ by Aitchinson et al. (2015), each referring to one of the two
possible identities of the stimulus:

δid0eN ðμ ¼ ð1� SidÞ � δt; σ ¼ sÞ
δid1eN ðμ ¼ Sid � δt; σ ¼ sÞ (10)

Δt denotes the physical SOA in seconds and s is a free noise param-
eter. The model assumed that the observer’s choices about the identity of
the stimulus and about the visibility depended on the posterior proba-
bility of the identity of the stimulus given the decision variables PðSidjδid0;
δid1Þ:

PðSid ¼ 1jδid0; δid1Þ¼
P

tPðδid0jΔt ¼ t; s;Sid ¼ 1ÞPðδid1jΔt ¼ t ; s; Sid ¼ 1ÞP
t;iPðδid0jΔt ¼ t; s; Sid ¼ iÞPðδid1jΔt ¼ t; s; Sid ¼ iÞ

(11)

A specific identity and degree of visibility were chosen by comparing
the posterior probability PðSid ¼ 1jδid0; δid1Þ against a set of criteria θ. It
was assumed that the possible identities and degrees of visibility formed
an ordered set of decision options. Each criterion delineated two adjacent
decision options, e.g. participants chose to respond that the identity was
1 and visibility was 1 if PðSid ¼ 1jδid0; δid1Þ was smaller than the criterion
associated with identity 1 and visibility 2, and at the same time
PðSid ¼ 1jδid0; δid1Þ was greater than the criterion for identity 0 and visi-
bility 1. Finally, it was assumed that observers did not always give the
same response as they intended to. When a lapse occurred, identification
and visibility responses were assumed to be random with equal proba-
bilities. The lapse rate λ was an additional free parameter.

2.7.2.3. Two high thresholds model. Model (ix), the two high thresholds
model, assumed that the decision variable for the identification judgment
δid was not continuous, but categorical δid 2 f0; 0:5; 1g: Observer could
either detect the identity of the stimulus and choose the response
accordingly Rid ¼ 0 if δid ¼ 0, and Rid ¼ 1 if δid ¼ 1. Alternatively, ob-
servers could be in a state of uncertainty, δid ¼ 0:5, in which no infor-
mation about the identity was available, and observers responded by
random guessing. The probability to detect the identity of the stimulus
depended on the five SOAs as well as on the identity of the stimulus,
resulting in a total of ten detection parameters pðδid ¼ SidjSs; SidÞ. A
guessing parameter g determined the probability with which observers
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responded Rid ¼ 1 when they were in the state of uncertainty. A specific
degree of confidence was sampled randomly depending on the three
possible states of δid and the response Rid: As the response was fixed when
observers detected the identity, there were four different sets of proba-
bilities to determine confidence judgments pðC ¼ cjδid ¼ 0Þ, pðC ¼ cjδid ¼
1), pðC ¼ cjδid ¼ 0:5;Rid ¼ 0Þ, and pðC ¼ cjδid ¼ 0:5;Rid ¼ 1Þ. All pðδid ¼
SidjSs;SidÞ,pðC¼ cjδid;RidÞ and g were free parameters.

2.8. Model fitting

The nine models were fitted to the combined distributions of orien-
tation discrimination and confidence judgments separately for each sin-
gle participant. First, the frequency of each confidence category was
counted for each orientation of the stimulus and each orientation
response. Then, for each model, the set of parameters was determined
that minimized the negative log-likelihood. For models (i)-(vii) and (ix),
the likelihood was calculated analytically (see Supplementary Tables S1
and S2). Only for the 2-D Bayesian model, the likelihood was approxi-
mated by simulation. Minimization was performed using a general
SIMPLEXminimization routine (Nelder andMead, 1965). To quantify the
goodness-of fit of the nine models, we calculated BIC (Schwarz, 1978)
and AICc (Burnham and Anderson, 2002), a variant of the Akaike in-
formation criterion (Akaike, 1974) using the negative likelihood of each
model fit with respect to each single participant and the trial number.

2.9. Predictions of ERP amplitudes

Predictions about mean ERP amplitudes in the time windows of P3,
ERN, and Pe were generated from model fits using the following
computational steps:

- First, the statistical models were used to calculate the probabilities of
all four confidence categories depending on SOA and choice accuracy
separately for each participant using the parameter sets obtained
during model fitting of the behavioural data and the formulae in
Supplementary Table S1.

- Then, an optimization procedure was used to obtain a transformation
to convert each confidence category into an EEG amplitude separately
for each participant (see below for details). As result, one specific
value of EEG amplitude was assigned to each confidence category.

- The statistical models provided us with probabilities of each confi-
dence category given SOA and accuracy.To obtain an estimate of
mean ERP amplitude on the level of single trials, the expected ERP
amplitude was calculated by averaging EEG amplitudes assigned to
the four different confidence categories weighted by the probability
of each confidence category as a function of SOA and accuracy.

- Finally, the correlations across trials between predicted and observed
ERP amplitudes were assessed separately for each participant.

Concerning the transformation of confidence into EEG amplitudes,
simplex minimization of sum-of-squares with respect to single-trial ERP
amplitudes was used to determine the parameters of the transformation.
There were to two separate runs of the analysis, one of which assumed a
linear transformation and one a monotonous transformation. The linear
transformation involved two free parameters, intercept and slope. The
monotonous transformation involved four free parameters, one for each
confidence categories, each parameter specifying the expected ERP
amplitude. These four parameters were constraint by the optimization
algorithm to ensure that the expected ERP amplitude was either
monotonously increasing or decreasing with confidence.

2.10. Statistical analysis

All statistical tests were based on Bayes factors (Rouder et al., 2009),
as implemented in the R package BayesFactor (Morey and Rouder, 2015).
To test if an ERP component was related to confidence or SOA, we used a
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Bayesian linear mixed regression model with confidence or SOA as fixed
effect and a random effect of participant on the intercept, using default
mixture-of-variance priors and a scale parameter of r ¼ 1/2 (Rouder and
Morey, 2012). Conceptually, the prior represents the a priori belief that
smaller regression slopes are more plausible than large slopes, while even
very large slopes were not deemed impossible. Each Bayes factor repre-
sents a comparison between the full regression model and a regression
model with only the random effect of participant. To compare fits be-
tween models of confidence, the Bayesian equivalent of a paired t-test
was used, assuming a Cauchy distribution with a scale parameter of 1 as
prior for the standardized effect size δ, a choice recommended as default
(Rouder et al., 2009). The strength of statistical evidence was interpreted
according to an established guideline (Lee and Wagenmakers, 2013). In
addition, we constructed 95% HDI intervals of the regression slopes or
mean differences by 106 samples from the posterior distribution using the
same models and priors as for Bayes factors.

Concerning figures, error bars and ribbons were based on within-
subject standard errors of mean corrected for the number of within-
subject conditions (Morey, 2008).

2.11. Data and code availability

The computer programme for the experiment, the behavioural and
EEG data, and all analysis scripts to reproduce all results reported in the
present paper are freely available at the Open Science Framework web-
site (https://osf.io/93weg).

3. Results

3.1. Behavioural results

Discrimination performance of the orientation ranged between
chance at the shortest SOA (M ¼ 50.8%, SD ¼ 2.6) and close-to-ceiling at
the longest SOA (M ¼ 94.8%, SD ¼ 8.5, see Fig. 2A). Confidence ranged
betweenM¼ 1.6 (SD¼ 0.6) on a four-point scale at the shortest SOA and
M¼ 3.7 (SD¼ 0.4) at the longest SOA. Fig. 2B shows that confidence was
characterised by an increase with SOA in correct as well as in incorrect
trials. The evidence for the increase with SOA was extremely strong for
correct trials, 95% HDI [0.016 0.020] scale steps/ms, BF10 ¼ 1.3∙1024,
and strong for incorrect trials, 95% HDI [0.002 0.007] scale points/ms,
BF10 ¼ 23.7. Supplementary Fig. S1 shows that at the shortest SOA, the
two larger confidence categories represented only a small fraction of
trials, while at the longest SOA, there was only small fraction of trials
with the two smaller confidence categories.

3.2. ERP results

The effects of confidence were examined in correct trials during the
time windows of the three candidate correlates of confidence: P3, ERN,
and Pe. Consistent with our prediction, there was extremely strong evi-
dence that EEG activity in the P3 time range (350–500 ms after onset of
the target stimulus, recorded at the parietal electrode Pz) increased with
confidence, 95% HDI [1.8 2.9] μV/scale step, BF10 ¼ 3.6∙1010 (see
Fig. 3A). Fig. 4A shows that the association between ERPs and confidence
in correct trials during the P3 time window had a centroparietal distri-
bution over the scalp, consistent with known topographies of the P3 in
difficult perceptual discrimination tasks (Koivisto and Revonsuo, 2010).
The analyses if confidence judgments predict EEG activity at the time of
the P3 separately for each SOA were not conclusive about an effect of
confidence for three out of four SOAs, 1.01 < BF10 < 2.53, and there was
moderate evidence against an effect at the SOA of 66.7 ms, BF10 ¼ 0.30.

Fig. 3B shows the effect of confidence in correct trials during the ERN
time window (-40 – 60 ms after the orientation response, at the fronto-
central electrode FCz). The evidence for an effect of confidence was not
conclusive, 95% HDI [-0.6 0.1] μV/scale step, BF10 ¼ 0.45. However,
although a positive relation between confidence and ERN would have

https://osf.io/93weg


Fig. 2. (A) Accuracy in the orientation discrimination task depending on stimulus-onset-asynchrony. B): Decision confidence as a function of stimulus-onset-
asynchrony in correct (blue symbols) and incorrect trials (red). Bars and symbols indicate observed means. Error bars indicate 1 within-subject SEM.

Fig. 3. Event-related potentials in correct trials as a function of confidence judgments. (A) Activity at the parietal electrode Pz locked to the onset of the target
stimulus. The box highlights the range of the P3 time window. The ERP is locked to the onset of the target stimulus. (B) Activity at the frontocentral electrode FCz
locked to the orientation response. The box highlights the time range of the ERN. (C) Activity at Pz locked to the orientation response. The box highlights the time
range of the Pe. Colours indicate the degree of confidence reported by the observers. Ribbons indicate �1 within-subject SEM around the mean.
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been expected, the trend was in the opposite direction. As shown by
Fig. 4B, no clear effect of confidence emerged anywhere over the scalp at
the time of the ERN. Finally, Fig. 3C shows the effect of confidence in
correct trials during the Pe time window (250–350 ms after the orien-
tation response, at Pz). In line with our prediction, there was strong ev-
idence that confidence was negatively associated with the ERP at the
time of the Pe, 95% HDI [-1.8–0.5] μV/scale step, BF10 ¼ 60.6. As can be
seen from Fig. 4C, the association between ERPs and confidence in cor-
rect trials during the Pe time window had a posterior parietal distribution
over the scalp, consistent with known topographies of the Pe (Boldt and
Yeung, 2015).
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Next, we tested if P3, ERN and Pe are markers of confidence by
comparing the effects of SOA on confidence judgments and on ERPs,
separately for correct and incorrect trials. Consistent with the pattern of
confidence judgments, there was extremely strong evidence that the ERP
in the P3 range increased with SOA in correct trials, 95% HDI [0.08 0.10]
μV/ms, BF10 ¼ 1.8∙1025, as well as in incorrect trials, 95% HDI [0.04
0.08] μV/ms, BF10 ¼ 1.2∙107 (see Fig. 5A–D, see also Figs. 7 and 8). In
the ERN range, Fig. 5H shows that the strongest effect at the time of the
ERN was a negative shift in incorrect trials at the longest SOA. The effect
of SOA in incorrect trials was in the opposite direction as the pattern of
confidence judgments: the evidence was extremely strong for a negative,



Fig. 4. Distribution of the association between ERPs and confidence in correct trials across the scalp. Maps are based on regression slopes with ERP amplitudes as a
function of confidence (A) Time window 350–500 ms after target stimulus onset. (B) Time window between 40 ms before the orientation response and 60 ms after the
response. (C) Time window 250–350 ms after the response.

Fig. 5. Event-related potentials as a function of stimulus-onset-asynchrony (different columns) and accuracy of the orientation response (blue: correct responses; red:
incorrect responses). (A–D) ERP activity locked to target stimulus onset, recorded at Pz. The box highlights the time window of the P3 (350–500 ms poststimulus).
(E–H) ERP activity locked to the orientation response, recorded at FCz. The box highlights the time window of the ERN (-40 – 60 ms postresponse). (I–L) ERP activity
locked to the orientation response, recorded at Pz. The box highlights the time window of the Pe (250–350 ms postresponse). Ribbons indicate �1 within-subject SEM
around the mean.
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not positive shift, 95% HDI [-0.04–0.01] μV/ms, BF10 ¼ 164.5. The
8

evidence with respect to an effect on correct trials was not conclusive,
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95% HDI [-0.01 0.00] μV/ms, BF10 ¼ 2.9. Fig. 5I-L shows that the EEG
activities in correct and incorrect trials at the time of the Pe seemed to
diverge from each other with increasing SOA, i.e. the Pe seemed to follow
the folded X-pattern. This is inconsistent with double increase pattern of
confidence judgments, as confidence had increased with SOA in both
correct and incorrect trials. As EEG activity at the time of the Pe is
negatively associated with confidence, the pattern of confidence judg-
ments implied a negative shift with SOA in both correct and incorrect
trials. In accordance with the pattern of confidence judgments, there was
extremely strong evidence for the negative shift with increasing SOA in
correct trials, 95% HDI [-0.05–0.03] μV/ms, BF10 ¼ 7.6∙107. However,
although the pattern of confidence judgments implied a negative shift
with increasing SOA in incorrect trials as well, there was moderate evi-
dence against a relationship between SOA and ERPs in incorrect trials at
the time of the Pe, 95% HDI [-0.01 0.03] μV/ms, BF10 ¼ 0.29.
3.3. Cognitive modelling

3.3.1. Modelling confidence judgments
Fig. 6 shows confidence judgments as a function of SOA and choice

accuracy compared to the model prediction based on parameter sets
identified during fitting. The WEV-model, the noisy decay model, the
detection heuristic model and the 2-D Bayesian model correctly pre-
dicted that confidence in incorrect trials increases with SOA, BF10 � 92.4
(Fig. 6, A, E, H, I). The SDT-model, the SDT-model with postdecisional
evidence, the noisy SDT model, and the two-channel model produced a
decreasing relationship instead (Fig. 6 B, C, D, G), BF10 � 3.3 � 1015. For
the two high-threshold model, the relationship between SOA and pre-
dicted confidence in incorrect trials appeared to be flat, but the evidence
was not conclusive, BF10 ¼ 0.39.
Fig. 6. Mean confidence judgments depending on stimulus-onset-asynchrony (x-Axis
of the different models based on the sets of parameters identified during model fitti
prediction for correct trials, red lines for incorrect trials. Ribbons indicate �1 within
confidence judgments in correct trials, and triangles in incorrect trials. Error bars ¼
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Quantifying model fit using the Akaike information criterion (AICc)
and the Bayes information criterion (BIC) showed that the best fit to the
data was obtained by theWEV-model, followed by the noisy decay model
(Fig. 7). Regarding AICc, the evidence if theWEVmodel performed better
than the noisy decay model was not conclusive, MΔAIC ¼ 8.9, 95% HDI
[-4.9, 21.6], BF10 ¼ 0.35, but there was very strong evidence that the
WEV-model performed better than the two-high-thresholds-model,
MΔAIC ¼ 99.4, 95% HDI [42.7.146.7], BF10 ¼ 43.4, and extreme evi-
dence that the WEV-model performed better than each of the other
models,MΔAIC � 34.2, BF10 � 101.3. Regarding BIC, there was moderate
evidence that the WEV-model performed better than the detection heu-
ristic model, MΔBIC ¼ 24.6, 95% HDI [7.1, 39.4], BF10 ¼ 6.8, strong ev-
idence that the WEV-model was better than the noisy decay model,MΔBIC
¼ 23.3, 95% HDI [8.5, 35.8], BF10 ¼ 16.5, and extreme evidence that the
WEV model was better than each of the other five models, MΔAIC � 34.2,
BF10 � 101.3. These results were essentially the same when it was
assumed that the variances of the decision variable differed between
horizontal or vertical stimuli. Summary statistics of the fitted parameters
of the WEV model can be found in the Supplementary Table S3.

3.3.2. Model classification analysis
To investigate if one of the other models could have been mis-

classified as WEV-model, a simulation was performed based on the
second-best and the third-best performing model, i.e. the noisy decay
model and the heuristic detection model. For each participant, we used
the parameter sets determined based on the empirical data to simulate
the same number of trials as in the real experiment. Then, both the
known generative model and the WEVmodel were fitted to the simulated
data of each participant and compared using AICc and BIC. When model
fits of the WEV model were compared with fits of the detection heuristic
) and accuracy of the orientation response. Different panels show the prediction
ng, assuming constant variances of the decision variable. Blue lines indicate the
-subject SEMs around the predicted mean confidence. Circles indicate observed
1 within-subject SEM.



Fig. 7. Formal model comparisons. The different panels depict the frequency of AICc- and BIC differences when the WEV model was compared to each of the seven
other models, assuming constant variances of the decision variable. AICc and BIC differences were assorted into categories based on established guidelines for
interpretation.
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model based on data that conforms to the detection heuristic model,
AICc-differences indicated the correct model for 83.3% of the simulated
data sets, while BIC-differences indicated the correct model for each
single data set (see Supplementary Fig. S2). When model fits of the WEV
model were compared with fits of the noisy decay model based on data
10
generated according to the noisy decay model, AICc-differences indicated
the correct model for 95.8% of the data sets, while BIC-differences
indicated the correct model for 75.0% data sets. It should be noted that
the present study compared AICc and BIC differences averaged across
participants, which is why it is not necessary that model classification is
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100%, it is merely required that model classification accuracy is mark-
edly above 50%.

3.3.3. Predicting ERPs from model fits
Based on parameter sets of the WEV-model obtained by fitting the

behavioural data, we determined expected ERP amplitudes at the time of
P3, ERN, and Pe as a function of SOA and choice accuracy. First, a simple
linear transformation was applied to confidence with parameters of the
transformation determined based on the EEG data. Fig. 8A shows that the
linear transformation of predicted confidence resulted in a reasonably
accurate prediction regarding ERP amplitude in the P3 window. Conse-
quently, there was a medium-sized correlation between predicted and
observed single-trial amplitudes at the time of the P3,M¼ 0.33, 95%HDI
[0.29 0.37]. In contrast, as can be seen from Fig. 8B, the predicted EEG in
the ERN time window did not reproduce the large negative shift specif-
ically in incorrect trials at the longest SOA. Therefore, the correlation
between predicted and observed single-trial amplitudes at the time of the
ERN was small,M ¼ 0.09, 95% HDI [0.06 0.11]. Likewise, Fig. 8C shows
that longer SOAs were associated with a positive shift in incorrect trials
during the Pe time window, which was just opposite to the pattern
observed with confidence judgments (cf. Fig. 2B) and therefore was not
reproduced by the prediction. The correlation between predicted and
observed single-trial amplitudes at the time of the Pe was also smallM ¼
0.16, 95% HDI [0.12 0.20]. The same results were obtained when we
repeated this analysis with the noisy decay model and the detection
heuristic model (see Supplementary Fig. S3). Finally, an exploratory
analysis was performed to assess when in quasi-continuous time the EEG
activity was associated with predicted confidence according to the WEV-
model. For this purpose, we used a series of multivariate regression an-
alyses performed separately for 10 ms time windows with confidence
predicted by the WEV-model as outcome variable and all sensors as
predictors (see Supplementary Fig. S4). The analysis suggested that
stimulus-locked EEG activity strongly predicted confidence according to
the WEV-model with peaks around 150 ms, 250 ms, and 400 ms post-
stimulus. The third peak coincided with the P3. For response-locked
ERPs, only a small portion of the variance of confidence according to
the WEV-model could be explained by EEG at the time of the response,
and a moderate portion during a broad time window between 200 and
500 ms postresponse.

The relationship between confidence and ERP amplitudes of course
does not need to be linear. For this reason, we fitted non-linear trans-
formations to the data from each subject by assigning the voltage that
minimized the prediction error with respect to ERP amplitude to each
level of confidence. The only restriction of the transformation was that
the relationship between confidence and ERP amplitudes was assumed to
be monotonous. Nevertheless, the predictions based on these specifically
adapted transformations were only consistent with amplitudes at the
time of the P3, but not with ERN or Pe (see Supplementary Fig. S5).

4. Discussion

The present study was consistent with an EEG correlate of decision
confidence 350–500 ms after onset of the stimulus, at the time of the P3
component: First, ERP amplitudes at the time of the P3 were associated
with observers’ confidence judgments, although the data were not
conclusive if the correlation between confidence and EEG activity at the
time of the P3 can be explained by the correlation between confidence
and SOA. Second, the amplitude at the time of the P3 varied as a function
of SOA and choice accuracy in the same way as confidence judgments
did. Finally, P3 amplitude could be accurately predicted by the weighted
evidence and visibility (WEV) model, which at the same time provided
the best account of confidence judgments. In contrast, EEG activity at the
time of the ERN component, an established marker of error detection, as
well as at the time of the Pe, a marker of error awareness, did not follow
the same statistical pattern as decision confidence as a function of SOA
and accuracy, despite the fact that a correlation between amplitude and
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confidence was detected at the time of the Pe. Moreover, there were only
weak correlations between the prediction derived from the WEV-model
and ERP amplitude at the time of ERN and Pe.

4.1. Role of the P3

The P3 was the only one of the three previously proposed ERP cor-
relates of decision confidence that was consistent with the present data.
Although the present study was not conclusive about an effect of confi-
dence on EEG activity over and above task difficulty, a previous study
using only one difficulty level of a different perceptual task observed that
confidence was associated with EEG activity at the time of the P3 (Boldt
and Yeung, 2015). Nevertheless, it cannot be ruled out that the observed
correlation between decision confidence and P3 is due to a common
cause. One potential alternative explanation is that the P3 reflects sub-
jective visibility (Lamy et al., 2008; Sergent et al., 2005; Tagliabue et al.,
2019), which is correlated to decision confidence but may not necessarily
reflect the same process (Jachs et al., 2015; Rausch and Zehetleitner,
2016; Zehetleitner and Rausch, 2013). A second possibility is that the P3
reflects processes involved in discrimination performance. Recent studies
showed that stimulus properties can be experimentally varied to change
confidence without changing discrimination performance (Koizumi
et al., 2015; Odegaard et al., 2018; Samaha et al., 2016). Experimental
manipulations of the stimulus that influence confidence but not accuracy
seem promising for future studies to elucidate if the P3 reflects confi-
dence or discrimination performance.

How could an association between P3 and decision confidence be
reconciled with the various other roles of the P3 that have been proposed
in the literature? An explanation may be given in terms of probabilistic
models of perception, according to which observers take into account
knowledge of the uncertainty associated with the observations (Ma,
2012). One possible interpretation is that the P3 directly reflects cer-
tainty within the decision process (Herding et al., 2019). In line with this
interpretation, the P3 showed the statistical pattern referred to as
folded-X pattern in a vibrotactile task (Herding et al., 2019), meaning
both statistical patterns associated with decision confidence in different
tasks, the folded X-pattern and the double increase pattern, have been
detected in P3 amplitudes. Moreover, the P3 is related to the accumu-
lation of sensory evidence within the decision process (O’Connell et al.,
2012; Twomey et al., 2015). Finally, the P3 is suppressed in highly visible
stimuli if observers are not required to make a perceptual decision (Pitts
et al., 2014). These findings converge with a line of research suggesting
that decision confidence may emerge directly from the decision process.
For example, neurons in parietal cortex of rhesus monkeys represented
both formation of the direction decision and the degree of certainty
(Kiani and Shadlen, 2009). Likewise, human EEG correlates of decision
formation and confidence coincided in time and in reconstructed sources
in a face vs. car discrimination task (Gherman and Philiastides, 2015). In
contrast, for at least one brain area implicated in decision making, the
superior colliculus, it was shown that it reflects decision making, not
decision confidence (Odegaard et al., 2018).

A second interpretation in terms of probabilistic models is that the P3
reflects sensory representations that include the reliability of the percept
(Kopp et al., 2016). This second view is consistent with classical in-
terpretations of the P3 as update of working memory in response to
task-relevant events (Donchin and Coles, 1988) or global broadcast of
information within a neural global workspace (Sergent et al., 2005).
These updated or broadcast representations may encompass the reli-
ability of the percept (Shea and Frith, 2019), which is why the P3 should
be correlated with confidence judgments. In line with this interpretation,
the WEV-model assumes that confidence is determined by the perceived
strength or reliability of the percept based on evidence about
choice-relevant and choice-irrelevant features. This means that the
inferred computational principles underlying decision confidence
include a representation of the reliability of the percept as well.

Finally, it should be noted that the observation that decision



Fig. 8. Comparison between predicted and observed amplitudes (A) in the P3 time window, (B) in the ERN time window, and (C) in the Pe time window, depending
on stimulus-onset-asynchrony (x-Axis) and accuracy of the orientation response (colours and symbols). Symbols: observed data. Lines: Prediction based on the pa-
rameters of the WEV-model fitted to confidence judgments as well as a linear transformation of confidence. Error bars ¼ 1 within-subject SEM. Ribbons ¼ 1 within-
subject SEM.
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confidence and P3 share their statistical patterns in the present study
does not imply that decision confidence and P3 necessary share their
statistical patterns across all possible experiments. The statistical patterns
associated with confidence vary across different tasks (e.g. Kiani et al.,
2014; Moran et al., 2015; Rausch et al., 2018; Sanders et al., 2016; van
den Berg et al., 2016). If the P3 were indeed a neural marker of decision
confidence, confidence and P3 should be associated with the same sta-
tistical patterns in all tasks. The present study and Herding et al. are not
sufficient to make this conclusion. Future studies are necessary to test if
the P3 is a general marker of decision confidence, or if the present results
are specific to the present task.
4.2. Role of ERN

In the present study, EEG activity in the ERN time window can be
interpreted as specifically error detection, but not as decision confidence.
EEG activity at the time of the ERN does not reflect confidence because
the effects of SOA were opposite to what was expected from observed
confidence judgments. At least in the present study, the ERN may not be
related to postdecisional sensory evidence, because sensory evidence in
correct trials is expected to increase with SOA (Hangya et al., 2016), but
at the time of the ERN, the only reliable effect was large negative shift
specifically in incorrect trials at the longest SOA. The absence of an ERN
at shorter SOAs is in line with a previous study showing that the elici-
tation of a ERN requires participants to know which response is the
correct one (Di Gregorio et al., 2018). Likewise, in the present study,
observers also did not know for sure which response had been correct at
shorter SOAs because the mask impeded perception of the target. These
findings are also consistent with a previous study showing that the ERN
occur only when observers make erroneous responses to stimuli rated as
“visible” (Charles et al., 2014, 2013). Although we did not measure
conscious awareness in the present study, we can extrapolate from other
studies using the same task that observers’ conscious percepts of the
stimuli were degraded in shorter SOAs (Rausch and Zehetleitner, 2019b;
Zehetleitner and Rausch, 2013); possibly, weakly conscious stimuli are
not sufficient to trigger an ERN.
4.3. Role of Pe

A possible interpretation for the role of the Pe in the present study is
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as accumulation of postdecisional sensory evidence. At least in the pre-
sent study, the Pe does not reflect decision confidence because their
statistical patterns as functions of SOA and choice accuracy are not
compatible. In addition, the Pe does not exclusively reflect error
awareness, because EEG activity at the time of the Pe was correlated with
confidence in correct trials. However, the pattern of the Pe as a function
of SOA and choice accuracy matches the diverging pattern between
correct and incorrect responses expected from postdecisional accumu-
lation of sensory evidence (Moran et al., 2015). The contribution of
postdecisional sensory evidence to confidence varies across tasks (Bar-
anski and Petrusic, 1994). In the present paradigm, it may be relatively
small, because themask prevents ongoing accumulation of evidence from
sensory memory. In line with this interpretation, cognitive modelling
showed that the WEV model fitted confidence much better than the SDT
model with postdecisional evidence. If the Pe reflects postdecisional
accumulation of evidence, this explains effects at the time of the Pe
seemed to be limited to high confidence trials why in the present study.
The efficiency of the mask varies across trials, and presumably the mask
had been relatively ineffective in trials when observers reported high
degrees of confidence. Moreover, if the Pe represents postdecisional
sensory evidence, it can be explained why a previous study detected an
association between the Pe and all degrees of confidence (Boldt and
Yeung, 2015). As stimuli in that study were not masked, postdecisional
accumulation of sensory evidence may have been more effective than in
the present study. Finally, the Pe may not only be sensitive to postdeci-
sional sensory evidence, but may reflect also other sources of informa-
tion, including response conflict, efference copy, proprioception,
perception of action effects, and interoception (Ullsperger et al., 2010;
Wessel et al., 2011).
4.4. Statistical signatures of confidence?

The present study demonstrates that statistical patterns of confidence
can provide a strong test for identifying correlates of confidence,
although it is crucial to validate statistical signatures of confidence
empirically by behavioural measures of confidence. It has been argued
that if confidence is determined objectively as the posterior probability of
being correct, the pattern referred to as folded X-pattern is the statistical
signature of confidence (Hangya et al., 2016; Sanders et al., 2016).
Therefore, a substantial number of recent studies have searched for the
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folded X-pattern to empirically identify correlates of decision confidence
(Braun et al., 2018; Fetsch et al., 2014; Herding et al., 2019; Lak et al.,
2017; Sanders et al., 2016; Urai et al., 2017). However, it has been shown
mathematically that the folded X-pattern is neither a necessary nor a
sufficient condition for Bayesian confidence (Adler and Ma, 2018;
Rausch and Zehetleitner, 2019a). The present study showed empirically
that a second statistical pattern of confidence exists and can be used to
identify correlates of confidence. Had we not measured decision confi-
dence directly and relied on the purported folded-X signature, the Pe, not
the P3, would have been falsely considered a correlate of confidence.

5. Conclusion

The present results are consistent with an EEG correlate of decision
confidence over parietal electrodes 350–500 ms after onset of the stim-
ulus. However, there is no single EEG correlate of decision confidence
and error awareness: EEG components after the response, which have
been established as markers of error detection or error awareness, were
dissociated from decision confidence.
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Supplementary Table S1. Formulae for calculating the likelihood of the data given the parameters for all models assuming continuous 

decision variables depending on the identity of the stimulus Sid, the stimulus strength Ss, the identification judgment Rid, as well as the 

confidence judgment Rv. f indicates the Gaussian probability density function.  

Model Rid C P(Rid, C|Sid, Ss) 

SDT 0 1 

∫ f(x|(Sid −  
1

2
) × Ss, σ𝑖𝑑)  dx

θid

θc01

 

0 2 

∫ f(x|(Sid −  
1

2
) × Ss, σ𝑖𝑑)  dx

θc01

θc02

 

0 5 

∫ f(x|(Sid −  
1

2
) × Ss, σ𝑖𝑑)  dx

θc04

−∞

 



2 

1 1 

∫ f(x|(Sid −  
1

2
) × Ss, σ𝑖𝑑)  dx

θc11

θid

 

1 2 

∫ f(x|(Sid −  
1

2
) × Ss, σ𝑖𝑑)  dx

θc12

θc11

 

1 5 

∫ f(x|μ(Sid −  
1

2
) × Ss, σ𝑖𝑑)  dx

∞

θc14

 

Noisy SDT 0 1 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |x, σ𝑐)dy

∞

θc01

)  dx

θid

−∞

 

0 2 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |x, 𝜎𝑐)dy

θc01

θc02

)  dx

θid

−∞

 



3 

0 5 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |x, 𝜎𝑐)dy

θc04

−∞

)  dx

θid

−∞

 

1 1 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |x, 𝜎𝑐)dy

θc11

−∞

)  dx

∞

θid

 

1 2 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |x, 𝜎𝑐)dy

θc12

θc11

)  dx

∞

θid

 

1 5 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |x, 𝜎𝑐)dy

∞

θc14

)  dx

∞

θid

 

Noisy decay 

model 

0 1 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |x × ρS, 𝜎𝑐)dy

∞

θc01

)  dx

θid

−∞

 



4 

0 2 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |x × ρS, 𝜎𝑐)dy

θc01

θc02

)  dx

θid

−∞

 

0 5 

∫ f (x| (Sid − 
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |x × ρS, 𝜎𝑐)dy

θc04

−∞

)  dx

θid

−∞

 

1 1 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |x × ρS, 𝜎𝑐)dy

θc11

−∞

)  dx

∞

θid

 

1 2 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |x × ρS, 𝜎𝑐)dy

θc12

θc11

)  dx

∞

θid

 

1 5 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |x × ρS, 𝜎𝑐)dy

∞

θc14

)  dx

∞

θid

 



5 

WEV-model 0 1 

∫ f (x|μ (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |(1 − w) × x + w × sgn(x − θid) ×  (Ss −  Ss̅), 𝜎𝑐)dy

∞

θc01

)  dx

θid

−∞

 

0 2 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |(1 − w) × x + w × sgn(x − θid) ×  (Ss −  Ss̅), 𝜎𝑐)dy

θc01

θc02

)  dx

θid

−∞

 

0 5 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |(1 − w) × x + w × sgn(x − θid) ×  (Ss −  Ss̅), 𝜎𝑐)dy

θc04

−∞

)  dx

θid

−∞

 

1 1 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |(1 − w) × x + w × sgn(x − θid) ×  (Ss −  Ss̅), 𝜎𝑐)dy

θc11

−∞

)  dx

∞

θid

 

1 2 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |(1 − w) × x + w × sgn(x − θid) ×  (Ss −  Ss̅), 𝜎𝑐)dy

θc12

θc11

)  dx

∞

θid

 



6 

1 5 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |(1 − w) × x + w × sgn(x − θid) ×  (Ss −  Ss̅), 𝜎𝑐)dy

∞

θc14

)  dx

∞

θid

 

Two-channel 

model 

0 1 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) dx × ∫ f(y | (Sid −  
1

2
) × Ss  × a, 1)dy

∞

θc01

θid

−∞

 

0 2 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) dx ×  ∫ f(y | (Sid −  
1

2
) × Ss  × a, 1)dy

θc01

θc02

θid

−∞

 

0 5 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) dx ×  ∫ f(y | (Sid −  
1

2
) × Ss  × a, 1)dy

θc04

−∞

 

θid

−∞

 

1 1 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) dx ×  ∫ f(y | (Sid −  
1

2
) × Ss  × a, 1)dy

θc11

−∞

∞

θid
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1 2 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) dx ×  ∫ f(y | (Sid −  
1

2
) × Ss  × a, 1)dy

θc12

θc11

∞

θid

 

1 5 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) dx ×  ∫ f(y | (Sid − 
1

2
) × Ss  × a, 1)dy

∞

θc14

∞

θid

 

SDT model 

with 

postdecisional 

evidence 

0 1 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |x +  (2 Sid −  1) × Ss × b, √b)dy

∞

θc01

)  dx

θid

−∞

 

0 2 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |x +  (2 Sid −  1) × Ss × b, √b)dy

θc01

θc02

)  dx

θid

−∞

 

0 5 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |x +  (2 Sid −  1) × Ss × b, √b)dy

θc04

−∞

)  dx

θid

−∞
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1 1 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |x +  (2 Sid −  1) × Ss × b, √b)dy

θc11

−∞

)  dx

∞

θid

 

1 2 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |x +  (2 Sid −  1) × Ss × b, √b)dy

θc12

θc11

)  dx

∞

θid

 

1 5 

∫ f (x| (Sid −  
1
2

) × Ss, σ𝑖𝑑) ×  ( ∫ f(y |x +  (2 Sid −  1) × Ss × b, √b)dy

∞

θc14

)  dx

∞

θid

 

Detection 

heuristic 

model 

0 1 

∫ f(x|(1 −  Sid) × Ss − b, σ𝑖𝑑) × ( ∫ f(y|(Sid − 1) × Ss + b, σ𝑖𝑑)

x

−∞

dy)

θc01

−∞

 dx 

0 2 

∫ f(x|μ =  (1 −  Sid) × Ss − b, σ𝑖𝑑) × ( ∫ f(y|μ =  (Sid − 1) × Ss + b, σ𝑖𝑑)

x

−∞

dy)

θc02

θc01

 dx 
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0 5 

∫ f(x|(1 −  Sid) × Ss − b, σ𝑖𝑑) × ( ∫ f(y|(Sid − 1) × Ss + b, σ𝑖𝑑)

x

−∞

dy)

∞

θc04

 dx 

1 1 

∫ f(x|(Sid − 1 ) × Ss + b, σ𝑖𝑑) × ( ∫ f(y|(1 −  Sid) × Ss − b, σ𝑖𝑑)

x

−∞

dy)

θc11

−∞

 dx 

1 2 

∫ f(x|(Sid − 1 ) × Ss + b, σ𝑖𝑑) × ( ∫ f(y|(1 −  Sid) × Ss − b, σ𝑖𝑑)

x

−∞

dy)

θc12

θc11

 dx 

1 5 

∫ f(x|(Sid − 1 ) × Ss + b, σ𝑖𝑑) × ( ∫ f(y|(1 −  Sid) × Ss − b, σ𝑖𝑑)

x

−∞

dy)

∞

θc14

 dx 

 



   

 

Supplementary Table S2. Formulae for calculating the likelihood of the data the two high threshold model depending on the identity of the 

stimulus Sid, and the discrimination response Rid. 

Sid Rid P(Rid, C = c|Sid, Ss) 

0 0 p(δid = 0|Ss, Sid = 0) × p(C = c|δid = 0) + 

(1 − p(δid = 0|Ss, Sid = 0)) × (1 − g) × p(C = c|δid = 0.5, Rid = 0) 

1 0 (1 −  p(δid = 1|Ss, Sid = 1)) × (1 − g) ×  p(C = c|δid = 0.5, Rid = 1) 

0 1 (1 −  p(δid = 0|Ss, Sid = 0)) × g ×  p(C = c|δid = 0.5, Rid = 0) 

1 1 p(δid = 1|Ss, Sid = 1) × p(C = c|δid = 1) + 

+(1 − p(δid = 1|Ss, Sid = 1)) × g × p(C = c|δid = 0.5, Rid = 1) 



   

 

Supplementary Figure S1. Proportion of incorrect confidence judgments (left panel) and 

correct confidence judgments (right panels) as a function of SOA (x-axis). Stacked bars 

indicate the fraction of trials with a specific confidence rating.  
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Supplementary Table S3. Summary statistics of the parameters of the WEV-model 
obtained during model fitting 

Parame
ter 

Interpretation M SD Min Max 

SS1 stimulus strength at the SOA of 16.7 ms -0.07 0.22 -0.62 0.39 

SS2 stimulus strength at the SOA of 33.3 ms 0.68 0.59 -0.07 2.11 

SS3 stimulus strength at the SOA of 66.7 ms 2.56 1.38 0.02 5.90 

SS4 stimulus strength at the SOA of 133.4 ms 4.05 1.49 1.03 7.21 

θid criterion with respect to the stimulus 
discrimination judgment 

-0.22 0.36 -0.85 0.40 

w degree to which confidence relies on 
sensory evidence about the identity or 
on identity-irrelevant evidence 

0.36 0.20 0.06 0.91 

σc noise superimposed on the confidence 
judgment 

0.54 0.51 0.02 2.85 

θc01 confidence criterion delineating C=1 and 
C=2, if Rid = 0 

0.02 0.64 -0.85 1.87 

θc02 confidence criterion delineating C=2 and 
C=3, if Rid = 0 

-0.68 0.47 -1.40 0.51 

θc03 confidence criterion delineating C=3 and 
C=4, if Rid = 0 

-1.10 0.50 -2.34 0.41 

θc11 confidence criterion delineating C=1 and 
C=2, if Rid = 1 

-0.05 0.75 -2.54 1.08 

θc12 confidence criterion delineating C=2 and 
C=3, if Rid = 1 

0.72 0.33 0.18 1.42 

θc13 confidence criterion delineating C=3 and 
C=4, if Rid = 01 

1.17 0.49 0.28 2.37 
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Supplementary Figure S2. Each bar represents model classification accuracy when data was simulated 

according to the model on the x-axis, and then the model fit of the generative model on the x-axis was 

compared against the model fit of an alternative model in different panels. Colours indicate different 

goodness-of-fit measures. We always fitted both the true generative model as well as an alternative 

model to the simulated data. Model classification was considered as correct if AICc or BIC of the 

generative model was smaller than AICc or BIC of the alternative model. For example, 100% model 

classification accuracy with BIC for the detection heuristic model as generative model compared 

against the WEV model means that we generated data sets according the detection heuristic model, 

fitted both the detection heuristic model and the WEV model to the simulated data, and for all 

simulated data sets, the BIC associated with the detection heuristic model was smaller than the BIC 

associated with the WEV model. The WEV model, the noisy decay model, and the detection heuristic 

model were selected for model classification analysis because these three models had performed best 

when we fitted the behavioural data.  

 



   



   

Supplementary Fig S3. Comparison between predicted and observed amplitudes (A-I) in the P3 time 

window, (J-R) in the ERN time window, and (S-AA) the Pe time window, depending on all the 

models used in the present study to fit the behavioural data (in columns), stimulus-onset-asynchrony 

(x-Axis) and accuracy of the orientation response (colours and symbols). Symbols: observed data. 

Lines: Prediction based on the parameters of the WEV-model fitted to confidence judgments as well 

as a linear transformation of confidence. Error bars = 1 within-subject SEM. Ribbons = 1 within-

subject SEM. When the noisy decay model was used to predict ERP amplitudes, the correlation 

between predicted and observed amplitudes was stronger at the time of the P3 (see panel E), M = .33, 

95% HDI = [.29 .36], compared to the correlations at the time of the ERN (see panel N), M = .09, 

95% HDI = [.06 .11], and Pe (panel W), M = .16, 95% HDI = [.12 .20]. Likewise, when the detection 

heuristic model was used, the results were the same, P3 (panel H): M = .33, 95% HDI = [.29 .37], 

ERN (panel Q): M = .09, 95% HDI = [.06 .11], and Pe (panel Z): M = .17, 95% HDI = [.12 .20]. 
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Supplementary Fig S4. Fraction of variance of confidence predicted by the WEV-model explained by 

EEG activity (y-axis) as a function of time locked to the onset of the stimulus (left panel) and locked 

to the response (right panel). Each dot represents the average adjusted R2 of multivariate regression 

analyses with confidence predicted by the WEV-model as outcome variable and all EEG 

sensors as predictors. R2 was adjusted for the number of predictors. Error bars = 1 within-subject 

SEM.  
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Supplementary Fig. S5. Comparison between predicted and observed amplitudes (A) in the P3 time 

window, (B) in the ERN time window, and (C) in the Pe time window, depending on stimulus-onset-

asynchrony (x-Axis) and accuracy of the orientation response (colours and symbols). Symbols: 

observed data. Lines: Prediction based on the parameters of the WEV-model fitted to confidence 

judgments as well as a monotonous transformation of confidence. Error bars = 1 within-subject SEM. 

Ribbons = 1 within-subject SE
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